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Linear stability analysis of walking vector solitons
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The linear stability analysis of two-parameter families of walking vector solitons of coupled nonlinear
Schrödinger equations is performed. It is shown that the eigenvalues of the corresponding linearized problem
can be complex valued in certain regions of the parameter space. The complex nature of the associated
Lyapunov eigenvalues leads to a quite complicated pattern of instability regions of lowest-order soliton types.
This pattern includes two typical situations:~i! the relevant eigenmode has a purely imaginary eigenvalue that
passes through zero at the critical point and then becomes purely real, and~ii ! the interplay between two
discrete eigenmodes having purely imaginary eigenvalues leads to a bifurcation scenario where two imaginary
eigenvalues merge together and become complex at the bifurcation point. It is shown that all known, lowest-
order soliton types, namely slow, fast, in-phase vector, and out-of-phase vector, are dynamically stable in
certain regions of the parameter space.@S1063-651X~99!00912-5#

PACS number~s!: 42.65.Tg, 42.81.Dp, 41.20.Jb
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I. INTRODUCTION

Solitons are ubiquitous entities which can be thought o
the nonlinear eigenmodes of certain dynamical systems@1#.
They play a fundamental role in many branches of nonlin
science, from both a theoretical and applied point of vie
The balance between linear dispersing~or diffracting! effects
and nonlinear effects gives rise to the formation of the
objects which are remarkably robust against various per
bations of the considered physical system. The solitons
thus stable solutions of completely integrable evolut
equations, but this is not necessarily so for the solitary wa
arising in physical systems modeled by nonintegrable n
linear evolution equations@2#. Understanding the stability o
solitary waves is a key issue of nonlinear physics becaus
its direct connection with the possibility of experimental o
servation of these rather robust objects. Important appl
tions of solitons, or, more properly, solitary waves in optic
transmission systems and devices are just emerging and
study of optical solitary waves in a variety of physical s
tings generates a continuously renewed interest@3,4#.

When weak nonlinearity and dispersion are present in
considered physical system, the envelopes of quasimo
chromatic waves obey the nonlinear Schro¨dinger equation
~NLSE! and its vector versions, that is, a system of two~or
more! coupled NLSEs. In this case one can naturally exp
that the mode interaction gives rise to many-compon
~vector! solitons, and therefore the elucidation of the d
namical stability of such entities is of paramount importan

The stability of many one-parameter families of brig
solitary-wave solutions of Hamiltonian, nonintegrable d
namical systems is well established@5–7#, and stability cri-
teria based on the conserved quantities of the evolution
hold for several soliton families are known. A typical e
ample is the so-called Vakhitov-Kolokolov criterion@5#,
which is known to hold for several one-parameter solit
families, including generalized NLSEs and the equations
scribing some quadratic solitons. The stability of on
parameter families of soliton solutions of various kinds
generalized Manakov equations describing propagation
PRE 601063-651X/99/60~6!/7504~7!/$15.00
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temporal vector optical solitons has been studied in a num
of works @8#. However, the stability features of multiple
parameter soliton families is much richer than commo
believed, and by and large constitutes a challenging probl
Examples, very important from the physical point of vie
and closely related to the dynamical system examined in
present paper, include two-parameter families of three-w
quadratic solitons@9#, two-wave and three-wave walkin
quadratic solitons@10#, walking vector solitons of coupled
NLSEs @11–13#, gap solitons existing in periodic structure
with cubic or quadratic nonlinearities@14–16#, or solitons of
generalized massive Thirring models in the presence of
persion@17#.

New instability mechanisms of higher-order modes in p
nar waveguides containing cubic nonlinear media@18# and of
higher-order peak-and-ring solitons in quadratic nonlin
media@19# linked to the non-Hermitian nature of the linea
ized perturbed evolution operator were discovered. Osc
tory instabilities for ground-state~nodeless! gap solitons ex-
isting in cubic nonlinear media due to the non-self-adjoint
of the Lyapunov operator were found recently@20#.

In this paper, we investigate in detail the instability sc
narios of the existing families of bright, lowest-order wal
ing vector solitons of general coupled NLSEs@21#. The
model considered is a generalized Manakov system@22–25#
originally derived by Menyuk@26# to describe pulse propa
gation in birefringent optical fibers in the presence of wa
off, self-phase modulation, cross-phase modulation,
three-wave mixing between the linearly polarized modes
the fiber. Such a system offers the additional motivation
the important applications of the phenomena uncovered
ultrafast devices for information processing@27–29#.

The organization of this paper is as follows. In Sec. II
thorough numerical analysis of the linear stability of the s
tionary solutions of the general coupled NLSEs is perform
the relevant instability scenarios are identified, and a mec
nism for the onset of the oscillatory instability is put in
evidence. The main results of this paper are summarize
the final section.
7504 © 1999 The American Physical Society
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II. LINEAR STABILITY ANALYSIS

We consider solitary-wave formation in a dynamical sy
tem described by the vector NLSE in the generic form@26#

i
]U

]j
1bU1 id

]U

]s
1

1

2

]2U

]s2
1~ uUu21AuVu2!U1BV2U*

50, ~1!

i
]V

]j
2bV2 id

]V

]s
1

1

2

]2V

]s2
1~ uVu21AuUu2!V1BU2V* 50.

In the case of pulse propagation in a birefringent fiber,U and
V are the amplitudes in each polarization,j is the normalized
propagation coordinate,s is the normalized time coordinate
d is proportional to the group velocity difference between
two polarizations,b is half the difference between the prop
gation wave numbers, the constantA depends on the moda
properties of the optical fiber, andB512A. In linearly bi-
refringent fibers,A52/3, as we set here. We consider he
the regime where the walk-off length associated tod, and the
birefringence beat length associated tob, are comparable to
the nonlinear scale length. In all the numerical calculatio
presented in this paper, we set the parametersb51 andd
51. Notice that the dynamical system~1! possesses only
three conserved quantities of the pulse evolution, namely
energy

FIG. 1. ~a! Hamiltonian versus energy, and~b! energy versus
velocity for the families of walking vector solitons at fixed mome
tum M526. Full lines: stable solitons. Dashed lines: unstable s
tons. The meaning of the marked points is explained in the tex
-

e

s

e

Q5E ~ uUu21uVu2!ds, ~2!

the momentum

M5
1

2i E F S U*
]U

]s
2U

]U*

]s D1S V*
]V

]s
2V

]V*

]s D Gds,

~3!

and the Hamiltonian

H5
1

2E H S U]U

]sU
2

1U]V

]sU
2D2@ uUu41uVu4#22b@ uUu22uVu2#

22AuUu2uVu22~12A!@U2V* 21U* 2V2#

2 idS U*
]U

]s
2U

]U

]s
* 2V*

]V

]s
1V

]V

]s
* D J ds. ~4!

The stability of soliton solutions of truncated versions
Eqs.~1!, without the terms with the coefficientsd or B, has
been studied in a number of works@8#. However, the exis-
tence of different kinds of two-parameter families of walkin
vector~in-phase and out-of-phase! and scalar~slow and fast!
solitons arising in the physical system modeled by the
truncated Hamiltonian dynamical system~1! was first inves-
tigated in Ref.@11#. Moreover, it was found there that, whe
the group-velocity difference is high enough, both slow a
fast linearly polarized solitons are unstable. A compreh

i-
FIG. 2. Same as in Fig. 1 but forM51.
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sive study of the characteristic features of the two-param
family of walking vector solitons of the generalized Man
kov model was performed in Ref.@13#. The aim of the
present paper is to expand on the work@21#, in order to
identify the mechanism responsible for the onset of osci
tory instabilities, and to get the corresponding regions
oscillatory instabilities in the space of the soliton paramete

First of all, by using a multiscale asymptotic method@9#,
we derive the condition of marginal stability of the two
parameter family of walking vector solitons. We first ma
the change of coordinatest5s2vj andz5j in Eqs.~1! and
we look for solutions of the formU5u(t,z)eiqz and V
5v(t,z)eiqz. Let c05c0(t)5(ur

s ,v r
s ,ui

s ,v i
s)T be the column

vector formed with the stationary walking vector solito
us5ur

s1 iui
s , vs5v r

s1 iv i
s . To analyze the stability of thes

solutions with respect to small perturbations, we substit
c(t,z)5c0(t)1«c1(t)elz, where c15(u1r ,v1r ,u1i ,v1i)

T

and « is a small parameter, into Eqs.~1! and linearize the
resulting equations obtaining a linear eigenvalue prob
Ac15lg, where A is a self-adjoint operator andg
5(u1i ,v1i ,2u1r ,2v1r)

T. For l50, this eigenvalue prob
lem has two spatially localized solutions,

]c0

]t
, ~ui

s ,v i
s ,2ur

s ,2v r
s!T, ~5!

giving the neutrally stable modes. In order to find a thresh
condition for the linear instability, we consider that the i
stability growth ratel is small, so that we can seek solutio
of the above linear eigenvalue problem in the form

FIG. 3. Same as in Fig. 1 but forM56.
er
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f

asymptotic series in the small parameterl: c1

5( j 50
` l jc1

( j ) , wherec1
( j )5(ur

( j ) ,v r
( j ) ,ui

( j ) ,v i
( j ))T. We intro-

duce also the seriesg5( j 50
` l jg( j ), whereg( j )5(ui

( j ) ,v i
( j ) ,

2ur
( j ) ,2v r

( j ))T. Substituting the above expansions into t
linearized equations and collecting terms of the same o
in l, we find the following explicit analytical solutions fo
the first-order corrections2]c0 /]v and 2]c0 /]q. The in-
stability threshold condition emerges at the next, second
der inl. Thus, in the second order we getAc1

(2)5g(1). Next
we use the following property of a self-adjoint operatorA:
let a0 belong to the kernel space of the operatorA (Aa0
50) and letb belong to the image space of the operatorA
(Aa5b); then the vectorsa0 and b are orthogonal to each
other. By imposing this orthogonality relation, we are le
with a linear homogeneous system of equations and its s
ability condition gives the equation defining the curve
marginal stability:J5](Q,M )/](q,v)50. This condition
~but a sufficient one! corresponds to the loci where the su
face (Q,M ,H) exhibits a folding and can also be derive
using pure geometrical approaches@7#.

By calculating the Jacobian for the families of walkin
vector solitons, one finds thatJ54 for all the slow and fast
solitons. In the case of vector in-phase and of vector out
phase solitons, the value ofJ depends on the soliton consid
ered. However, for all the vector soliton families that w
examined numerically, the important result found is thaJ

FIG. 4. The eigenvalue versus velocity forM526. Dotted
lines: real part. Dashed lines: imaginary part. The full lines sh
the lower bound of the continuous spectrum.~a! Out-of-phase soli-
ton branching out from the fast one,~b! fast, and~c! slow.
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FIG. 5. Same as in Fig. 4 but forM51. ~a! Out-of-phase soliton branching out from the fast one,~b! out-of-phase soliton branching ou
from the slow one,~c! slow, ~d! fast, and~e! in-phase.
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never vanishes. Yet, the existence of unstable walking ve
soliton solutions is readily exposed by solving Eqs.~1! nu-
merically and considering different stationary solutions
input conditions. As a typical example, we found that t
unstable vector out-of-phase soliton reshapes into a st
vector in-phase soliton. This process is accompanied b
change of the velocity of the input soliton@21#. Therefore, in
order to find the stability domains of walking vector soliton
we proceed as follows.

First we linearize the evolution equations~1! around the
or

s

le
a

,

stationary walking vector soliton and obtain the followin
eigenvalue problem:Lc15lc1, where the column vectorc1,
defined above, is the small perturbation. The linearized n
self-adjoint operatorL is a 434 matrix having the following
elements: l 1152(d2v)(]/]t)22ur

sui
s22(12A)v r

sv i
s ,

l 225(d1v)(]/]t)22v r
sv i

s22(12A)ur
sui

s , l 3352(d
2v)(]/]t)12ur

sui
s12(12A)v r

sv i
s , l 445(d1v)(]/]t)

12v r
sv i

s12(12A)ur
sui

s , l 315(b2q)1 1
2 (]2/]t2)13ur

s2

1ui
s21v r

s21(2A21)v i
s2, l 4252(b1q)1 1

2 (]2/]t2)
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13v r
s21v i

s21ur
s21(2A21)ui

s2,
l 1352(b2q)2 1

2 (]2/]t2)23ui
s22ur

s22v i
s22(2A21)v r

s2,
l 245(b1q)2 1

2 (]2/]t2)23v i
s22v r

s22ui
s22(2A21)ur

s2,
l 325 l 4152ur

sv r
s12(12A)ui

sv i
s , l 3452 l 2152(2A21)ur

sv i
s

12(12A)ui
sv r

s , l 4352 l 1252(2A21)ui
sv r

s12(1
2A)ur

sv i
s , l 145 l 23522ui

sv i
s22(12A)ur

sv r
s .

Asymptotically, that is, for large values oft, the eigen-
value equation can be solved by means ofc1;e6 ivt yielding
the dispersion relations from which we find the lower bou
of the continuum spectrum. Thus we get

l5 i @6v~d2v !6~ 1
2 v21q2b!#, ~6!

FIG. 6. Same as in Fig. 4 but forM56. ~a! Out-of-phase soliton
branching from the slow one,~b! slow, and~c! fast.

FIG. 7. ~a! Internal normalized eigenvector corresponding
branch 8 in Fig. 6~b! at the pointv51.2, slightly before the critical
point vc51.215 74. ~b! Internal normalized eigenvector corre
sponding to the pointv52.162 79 slightly after the bifurcation
point vc52.160 56 where the branches 3 and 4 in Fig. 6~b! meet.
Dots mark the neutrally stable eigenmode.
and

l5 i @6v~d1v !6~ 1
2 v21q1b!#. ~7!

The limit of the continuum spectrum is then given by

lc5 i min@q2b2~d2v !2/2, q1b2~d1v !2/2# ~8!

for the vector solitons and

lc5 i @q6b2~d6v !2/2# ~9!

for the fast and slow solitons, respectively. Thus the eig
values of the continuous spectrum lie on the imaginary a
namely on the rays (lc ,i`) and (2lc ,2 i`).

The stationary solution of the dynamical system~1! are
spectrally stable when the spectrum of the linearized oper
L has no strictly positive real part. The linear eigenval
problem has two localized states with the eigenvaluel50,
corresponding to translational and phase invariance of
~1!. The other eigenvalues of the operatorL arise in pairs
(l,2l) and (l* ,2l* ) because the trace of the operatorL
is zero.

Figures 1–3 show the four kinds of existing families
stationary solitons. Figures 1~a!–3~a! show the families of
stationary solutions presented in aQ-H diagram, for three
representative values of the momentumM526, M51, and
M56, whereas in Figs. 1~b!–3~b! we plot the dependence o
the soliton energy on the soliton velocity for the same m
mentum values. Here the stable solitons are displayed w
solid lines and the unstable ones with dashed lines. Th
exists a one-to-one correspondence between the pointsA and
B in Figs. 1~a! and 1~b!, betweenA andF in Figs. 2~a! and
2~b!, and between the pointsA andD in Figs. 3~a! and 3~b!.
In agreement with the expectations, one finds that for a fi
momentum and for a given energy flow, the solitons rea
ing the absolute minimum of the Hamiltonian are dynam
cally stable@the lower full lines in Figs. 1~a!–3~a!#. Impor-
tantly, the lower full line in Fig. 1~a! corresponds to stable
slow solitons for the chosen negative value of the mom
tum. The lower full line displayed in Fig. 2~a! corresponds to
stable slow solitons until the crossing pointF with the curve
for in-phase solitons, then to stable in-phase solitons until
crossing pointC with the curve for fast solitons, and finall

FIG. 8. Internal normalized eigenvector corresponding to
point v50.504 slightly after the bifurcation pointvc50.505 where
the branches 1 and 2 in Fig. 6~a! fuse. In~a! U component, and in
~b! V component. Dotted lines: the neutrally stable eigenvec
~only the real part is shown!.



rre
in

re

of
x

as

u

t

n

rg

re
a
w

e

w

al

n
,

va
n
o

ec

e
u

an
f
io
in
e

at

i-

a
al

by

,
the

ing

ey
te

ty.

ve
ro-
an
eu-

ro
e
lly

os-

n-
ally
Re-
na-
in-

cal
all
tal

a-
n
in-

er
em
or

lso
us,
per

of
e
a

y-
an
of

irth

PRE 60 7509LINEAR STABILITY ANALYSIS OF WALKING VECTO R . . .
to the fast solitons beyond the pointC. The lower full line in
Fig. 3~a! is composed of two stable pieces: one piece co
sponding to vector in-phase solitons until the crossing po
A with the curve for fast solitons, and the other one cor
sponding to fast solitons beyond the pointA. The sheets on
the surfaceH5H(Q,M ) that correspond to higher values
H need special consideration. We have found that there e
also stable~or, more precisely,metastable! stationary solu-
tions on these upper sheets, where the Hamiltonian h
local minimum. As shown in Figs. 1~a!–3~a!, we have found
that metastable vector out-of-phase solitons located in s
an upper sheet also exist: the curves joining the pointsA and
B in Figs. 1~a! and 2~a! @see also the inset in Fig. 1~a!# and
the curves joining the pointsB andC in Fig. 3~a!. There is an
additional metastable branch of the fast mode connecting
points C and D in Figs. 2~a! and 2~b!. Notice that forM
51 there exist two branches of the out-of-phase mode
different regions of the parameter space, namely, one bra
joining the pointsC andE in Figs. 2~a! and 2~b!, very close
to the in-phase branch@see the inset in Fig. 2~a!#, and the
other one bifurcating from the fast mode at the pointA. The
small full line beyond the pointD in Fig. 3~b! corresponds to
the stable branch of the slow mode arising for rather la
values of the energy and is not shown in Fig. 3~a!.

Now we discuss the parametric dependence of the
evant Lyapunov eigenvalues in order to identify the bifurc
tions to complex-valued eigenvalues. The previously kno
instability scenario for the ground states~nodeless solutions!
is related to the existence forJ.0 of a pair of purely imagi-
nary eigenvalues~with opoposite signs because of th
Hamiltonian nature of the dynamical problem! lying in the
gap @that is, ouside the interval (2lc ,lc)#. These eigenval-
ues pass through zero at the bifurcation point whereJ50
and then appear again as two purely real eigenvalues
opposite signs. At the point where the JacobianJ vanishes,
the corresponding eigenvectors coincide with the neutr
stable modes~5! ~see, e.g.,@30#!.

The outcomes of the Lyapunov eigenvalue calculatio
for M526, M51, andM56 are summarized in Figs. 4, 5
and 6, respectively, which show the values of the eigen
ues with the largest real part. As shown in the plot, we fou
that the soliton solutions destabilize either via the arising
purely real eigenvaluesor via the arising ofcomplex eigen-
valueswith nonzero real and imaginary parts.

We have evidentiated two instability scenarios, irresp
tive of the chosen values of the momentum~large negative,
small positive, and large positive!: ~i! the standard instability
described above related to the fact that the relevant eig
mode has a purely imaginary eigenvalue that passes thro
zero at the critical point and then becomes purely real,
~ii ! the onset of instability is given by the appearance o
pair of complex-conjugate eigenvalues at the bifurcat
point. This instability scenario is similar to that present
other physical settings, for example in the case of high
order (TE1) modes of nonlinear planar waveguides@18# and
in the case of higher-order parametric solitons in quadr
cally nonlinear media which have a central peak and one
more surrounding rings~referred to as peak-and-ring sol
tons! @19#.

We have found that the in-phase vector solitons are
ways stable@see Fig. 5~e!#. For the other modes, the gener
-
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feature is that there are regions of instability separated
small regions of stability~or metastability! @see, for example,
the regions marked by the curves 3, 4, and 5 in Figs. 4~b!,
5~c!, 5~d!, and 6~b!#. In addition to the standard instability
which can be captured by asymptotic expansion around
neutrally stable eigenmode, we have identified the follow
bifurcation scenario: one internal eigenmode@line 4 in Fig.
4~a!# fuses with another internal eigenmode@line 3 in Fig.
4~a!#, which emerges from the continuum spectrum. Th
form two pairs of eigenfunctions having complex-conjuga
eigenvalues, giving the onset of the oscillatory instabili
The same kind of instability is shown in Figs. 5~a!, 5~c!, and
5~d! ~the lines 3 and 4!, in Figs. 6~a! ~the lines 1 and 2!, and
in Fig. 6~b! ~the lines 3 and 4!. The standard bifurcation
scenario is illustrated in Figs. 4~b!, 5~c!, 5~d!, 6~b!, and 6~c!.

In order to compare the two kinds of bifurcation, we ha
plotted in Figs. 7 and 8 the corresponding eigenvector p
files. In the case of standard bifurcation, the instability c
be well described by asymptotic expansion around the n
trally stable eigenmode@see Fig. 7~a!, where the internal
eigenfunction profile is found to be very close to the ze
mode profile#, whereas for the other kind of bifurcation th
eigenvector profiles are quite different from the neutra
stable eigenmodes@see Figs. 7~b!, 8~a!, and 8~b!#. These
eigenvectors can be spatially extended, displaying rapid
cillations @see Fig. 7~b!#.

III. CONCLUSIONS

We have shown that all slow, fast, walking vector i
phase, and vector out-of-phase solitons can be dynamic
stable for appropriate values of the soliton parameters.
garding the evolution of unstable solutions, the complex
ture of the corresponding Lyapunov eigenvalues in some
tervals of soliton parameters leads to a rich dynami
behavior, showing oscillatory exponential growth of sm
perturbations similar to those found for the fundamen
modes of the generalized Thirring models@20#.

The important result of this paper is the clear identific
tion of the fact that the collision of two internal solito
modes gives the mechanism for the onset of oscillatory
stabilities in the generalized Manakov model.

In conclusion, the cascade of bifurcations of lowest-ord
walking vector solitons of a generalized Manakov syst
discovered in this work, similar to those previously found f
higher-order nonlinear modes in cubic@18# and quadratic
@19# media, indicates that such instability scenarios may a
exist for lowest-order states of other physical models. Th
the complicated instability pattern presented in this pa
may have important consequences for dynamical stability
multiparameter solitons in other Hamiltonian systems. W
envisage that such results may be of interest both from
fundamental point of view in understanding nonlinear d
namics of conservative, Hamiltonian systems, and from
applicative point of view as well, whenever robustness
solitary waves is required.
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Paré, Phys. Rev. E54, 846 ~1996!.

@26# C.R. Menyuk, IEEE J. Quantum Electron.QE-23, 174~1987!;
QE-25, 2674 ~1989!; S.G. Evangelides, L.F. Mollenauer, J.P
Gordon, and N.S. Bergano, J. Lightwave Technol.10, 28
~1992!.

@27# S. Trillo, S. Wabnitz, E.M. Wright, and G.I. Stegeman, Op
Commun.70, 166 ~1989!; S. Wabnitz, S. Trillo, E.M. Wright,
and G.I. Stegeman, J. Opt. Soc. Am. B8, 602 ~1991!; A.B.
Aceves and S. Wabnitz, Opt. Lett.17, 25 ~1992!.

@28# M.N. Islam, Ultrafast Fiber Switching Devices and System
~Cambridge U. Press, Cambridge, 1992!.

@29# Y. Barad and Y. Silberberg, Phys. Rev. Lett.78, 3290~1997!.
@30# C. Etrich, U. Peschel, F. Lederer, B.A. Malomed, and Y

Kivshar, Phys. Rev. E54, 4321~1996!.


