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Linear stability analysis of walking vector solitons
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The linear stability analysis of two-parameter families of walking vector solitons of coupled nonlinear
Schralinger equations is performed. It is shown that the eigenvalues of the corresponding linearized problem
can be complex valued in certain regions of the parameter space. The complex nature of the associated
Lyapunov eigenvalues leads to a quite complicated pattern of instability regions of lowest-order soliton types.
This pattern includes two typical situatior(§: the relevant eigenmode has a purely imaginary eigenvalue that
passes through zero at the critical point and then becomes purely realiijatite interplay between two
discrete eigenmodes having purely imaginary eigenvalues leads to a bifurcation scenario where two imaginary
eigenvalues merge together and become complex at the bifurcation point. It is shown that all known, lowest-
order soliton types, namely slow, fast, in-phase vector, and out-of-phase vector, are dynamically stable in
certain regions of the parameter spd&1063-651X99)00912-3

PACS numbe(s): 42.65.Tg, 42.81.Dp, 41.20.Jb

[. INTRODUCTION temporal vector optical solitons has been studied in a number
of works [8]. However, the stability features of multiple-
Solitons are ubiquitous entities which can be thought of aparameter soliton families is much richer than commonly
the nonlinear eigenmodes of certain dynamical systgths believed, and by and large constitutes a challenging problem.
They play a fundamental role in many branches of nonlineaExamples, very important from the physical point of view,
science, from both a theoretical and applied point of view.and closely related to the dynamical system examined in the
The balance between linear dispersiogdiffracting effects  present paper, include two-parameter families of three-wave
and nonlinear effects gives rise to the formation of thesejuadratic solitond9], two-wave and three-wave walking
objects which are remarkably robust against various perturguadratic solitong10], walking vector solitons of coupled
bations of the considered physical system. The solitons arLSEs[11-13, gap solitons existing in periodic structures
thus stable solutions of completely integrable evolutionwith cubic or quadratic nonlineariti¢é4—16, or solitons of
equations, but this is not necessarily so for the solitary wavegeneralized massive Thirring models in the presence of dis-
arising in physical systems modeled by nonintegrable nonpersion[17].
linear evolution equationi2]. Understanding the stability of ~ New instability mechanisms of higher-order modes in pla-
solitary waves is a key issue of nonlinear physics because ¢far waveguides containing cubic nonlinear med#] and of
its direct connection with the possibility of experimental ob- higher-order peak-and-ring solitons in quadratic nonlinear
servation of these rather robust objects. Important app”C%edia[lg] linked to the non-Hermitian nature of the linear-

tions of solitons, or, more properly, solitary waves in optical;, oy pherturbed evolution operator were discovered. Oscilla-
transmission systems and devices are just emerging and the incapjlities for ground-stattodelessgap solitons ex-

Eﬁjdsy 2@?25:; zoclzléarl\rt)i/n\lljvs:sels Lgnae\yvaegeitzt:[';%]ys'cal sepisting in cubic nonlinear media due to the non-self-adjointess
9s 9 y ' of the Lyapunov operator were found recerti0].

When weak nonlinearity and dispersion are present in the In this paper, we investigate in detail the instability sce-
considered physical system, the envelopes of quasimono- paper, g y

chromatic waves obey the nonlinear Safirger equation narios of the e_xisting families of bright, lowest-order walk-
(NLSE) and its vector versions, that is, a system of tgo N9 Vector solitons of general coupled NLSEB1]. The
more coupled NLSESs. In this case one can naturally expecfhodel considered is a generalized Manakov syd22s-25
that the mode interaction gives rise to many-componen@figinally derived by MenyuK26] to describe pulse propa-
(vecton solitons, and therefore the elucidation of the dy_gatlon in birefringent optical fibers in the presence of walk-
namical stability of such entities is of paramount importance ©ff, self-phase modulation, cross-phase modulation, and
The stability of many one-parameter families of bright three-wave mixing between the linearly polarized modes of
solitary-wave solutions of Hamiltonian, nonintegrable dy-the fiber. Such a system offers the additional motivation of
namical systems is well establishggl-7], and stability cri- the important applications of the phenomena uncovered to
teria based on the conserved quantities of the evolution thatltrafast devices for information processify—29.
hold for several soliton families are known. A typical ex- The organization of this paper is as follows. In Sec. II, a
ample is the so-called Vakhitov-Kolokolov criteriofb],  thorough numerical analysis of the linear stability of the sta-
which is known to hold for several one-parameter solitontionary solutions of the general coupled NLSEs is performed,
families, including generalized NLSEs and the equations dethe relevant instability scenarios are identified, and a mecha-
scribing some quadratic solitons. The stability of one-nism for the onset of the oscillatory instability is put into
parameter families of soliton solutions of various kinds ofevidence. The main results of this paper are summarized in
generalized Manakov equations describing propagation ahe final section.
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FIG. 1. (8 Hamiltonian versus energy, ail) energy versus -2
velocity for the families of walking vector solitons at fixed momen- (b) Velocity
tumM = —6. Full lines: stable solitons. Dashed lines: unstable soli-
tons. The meaning of the marked points is explained in the text. FIG. 2. Same as in Fig. 1 but fav =1.

II. LINEAR STABILITY ANALYSIS
: : o : = | (JU]2+|V|?)ds, 2
We consider solitary-wave formation in a dynamical sys- Q f (UIEFIVI @

tem described by the vector NLSE in the generic fQ&6]
the momentum

U oy 15U 2 2 1 LU ou N Vv
+,8U+|5—+§—+(|U| +A|V[)HU+BV2U* M= — Ly 2 ds
‘95 Js 2i s ds ds Js '
=0, (1) €)
and the Hamiltonian
Y av 1 azv
iz BV-id——+3 +(|V|?+AJU[?)V+BU2V* =0. V|2 o 2
% ot =3[ 111% ~[1U1+ V4T 2801V V2]
In the case of pulse p_ropagation in_ a t_)ire_fringent filhbgnd _ 2A|U|2|V|2—(1—A)[U2V*2+ U*2v2]
V are the amplitudes in each polarizati@ris the normalized
propagation coordinate,is the normalized time coordinate, ) . aJ, Vv v,
8 is proportional to the group velocity difference betweenthe ~ ~19| U s U s TV 95 Vg ds. )

two polarizationsg is half the difference between the propa-

gation wave numbers, the consta#tlepends on the modal The stability of soliton solutions of truncated versions of
properties of the optical fiber, arBi=1—A. In linearly bi-  Egs.(1), without the terms with the coefficientsor B, has
refringent fibersA=2/3, as we set here. We consider herebeen studied in a number of work8]. However, the exis-
the regime where the walk-off length associatedtand the tence of different kinds of two-parameter families of walking
birefringence beat length associated3pare comparable to vector(in-phase and out-of-phasand scalafslow and fast

the nonlinear scale length. In all the numerical calculationssolitons arising in the physical system modeled by the un-
presented in this paper, we set the paramegsrdl andé  truncated Hamiltonian dynamical systéf) was first inves-
=1. Notice that the dynamical systef) possesses only tigated in Ref[11]. Moreover, it was found there that, when
three conserved quantities of the pulse evolution, namely ththe group-velocity difference is high enough, both slow and
energy fast linearly polarized solitons are unstable. A comprehen-
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FIG. 3. Same as in Fig. 1 but fon =6. ) .
FIG. 4. The eigenvalue versus velocity fi=—6. Dotted

lines: real part. Dashed lines: imaginary part. The full lines show
%ﬁe lower bound of the continuous spectru@. Out-of-phase soli-
" ton branching out from the fast ongh) fast, and(c) slow.

sive study of the characteristic features of the two-paramet
family of walking vector solitons of the generalized Mana
kov model was performed in Refl3]. The aim of the
present paper is to expand on the w@gél], in order to
identify the mechanism responsible for the onset of oscillaasymptotic ~series in the small parametexr: c;
tory instabilities, and to get the corresponding regions of=="_\ic{’, wherec{’=(u® v u® ,vNT. We intro-
oscillatory instabilities in the space of the soliton parametersduce also the serieg= 2}”:0)\19(1), Whereg(”=(ui(') ,Vi(l),
First_of all, by using a multiscal_e asympf[(_)tic metH&d, —uﬁj) ,—vﬁj))T. Substituting the above expansions into the
we derive the condition of marginal stability of the two- |inearized equations and collecting terms of the same order
parameter family of walking vector solitons. We first makejn \, we find the following explicit analytical solutions for
the change of coordinates=s—v¢& and{=¢in Egs.(1) and  the first-order corrections- dcy/dv and — dcy/dq. The in-
we look for solutions of the forml=u(7,)e'% and V  stability threshold condition emerges at the next, second or-
=v(7,0)€e"%. Letco=Co(7) = (u;,v7 U7 v;) be the column  ger inx. Thus, in the second order we g&t{®)=g®. Next
vector formed with the stationary walking vector solitons,ye yse the following property of a self-adjoint operagar
Us=UP+iu?, ve=Vv7+ivy. To analyze the stability of these |et a, belong to the kernel space of the operator(Aa,
solutions with respect to small perturbations, we substitute-= 0) and letb belong to the image space of the operaior
o(7,0)=co(7) +ecy(7)€M, where c;=(uy vy, ,Usi,Ve)"  (Aa=b); then the vectors, andb are orthogonal to each
ande is a small parameter, into Eqél) and linearize the other. By imposing this orthogonality relation, we are left
resulting equations obtaining a linear eigenvalue problenyith a linear homogeneous system of equations and its solv-
Ac;=\g, where A is a self-adjoint operator andy  ability condition gives the equation defining the curve of
=(Uyj,Vai,— Uy, —Vy,) . Fora=0, this eigenvalue prob- marginal stability:J=d(Q,M)/d(q,v)=0. This condition
lem has two spatially localized solutions, (but a sufficient onecorresponds to the loci where the sur-
face (Q,M,H) exhibits afolding and can also be derived
(5) using pure geometrical approacH&$.
By calculating the Jacobian for the families of walking
vector solitons, one finds tha&=4 for all the slow and fast
giving the neutrally stable modes. In order to find a thresholdsolitons. In the case of vector in-phase and of vector out-of-
condition for the linear instability, we consider that the in- phase solitons, the value dfdepends on the soliton consid-
stability growth ratex is small, so that we can seek solutions ered. However, for all the vector soliton families that we
of the above linear eigenvalue problem in the form ofexamined numerically, the important result found is that

dCo
.
T (up, vy, —u?,—vy)
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FIG. 5. Same as in Fig. 4 but fod =1. (a) Out-of-phase soliton branching out from the fast o out-of-phase soliton branching out
from the slow one(c) slow, (d) fast, and(e) in-phase.

never vanishes. Yet, the existence of unstable walking vectatationary walking vector soliton and obtain the following
soliton solutions is readily exposed by solving E¢b. nu-  eigenvalue problem:c,=\c;, where the column vectar,
merically and considering different stationary solutions asdefined above, is the small perturbation. The linearized non-
input conditions. As a typical example, we found that theself-adjoint operatok is a 4x 4 matrix having the following
unstable vector out-of-phase soliton reshapes into a stablgements:  1,,= — (56— v)(a/ar) 2usuP—2(1— A)vv?,
vector in-phase soliton. This process is accompanied by p = (5+V)(9la7) — 2vSvS—2(1— A)ur s, lyg=— (8
change of the velocity of the input solitAl]. Therefore, in suS
order to find the stability domains of walking vector solitons, _V)(Sa/S&T)JFZU +2(1 AT |4‘1‘ (25+\£)(‘9/‘9?2
we proceed as follows. +2v 4 +22(1 AT, 1= (B—a) +32(d /a: )“2L3”£
First we linearize the evolution equatiof® around the U +Vvi+(2A—1)v?, l3= = (B+0q)+3(5%37°)
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Velocity A=i[*w(5+Vv)+(2w’+g+B)]. (7
% The limit of the continuum spectrum is then given by
>
c
@
2 Ae=imin[q—B—(6—Vv)?/2, q+B—(6+Vv)%2] (8)
g
g for the vector solitons and
>
|
03 0.8 13 Ae=i[qxB—(6+Vv)?/2] 9
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FIG. 6. Same as in Fig. 4 but féd =6. (a) Out-of-phase soliton  for the fast and slow solitons, respectively. Thus the eigen-
branching from the slow onéb) slow, and(c) fast. values of the continuous spectrum lie on the imaginary axis,
namely on the rays\;,i) and (—\;,—i%®).
+3vi VP U+ (2A—1)uf?, The stationary solution of the dynamical systéi are
li5=—(B—Qq)—3(3%/97%)—3uf?—u2—v?— (2A—1)v;?,  spectrally stable when the spectrum of the linearized operator
l=(B+q)—% 02/ﬂ7'2)—3Vi32—Vr32_Ui32_(2A_1)Ufz, L has no strictly positive real part. The linear eigenvalue
l3p=141=2u5V5+2(1— A)USVS, lg=—1,;=2(2A—1)usy®  problem has two localized states with the eigenvalee0,
+2(1-A)uvS, 5= — 1= 2(2A— 1)usvS+2(1 corresponding to translational and phase invariance of Eq.
— AUV I|14=I23=—2u-5v-3—2(1—A)uSvS ' (1). The other eigenvalues of the operatorarise in pairs
rVios ivi rvr- _ * _\*
Asymptotically, that is, for large values of the eigen- i(s)\'zer)g) and (\*,—\*) because the trace of the operator

value equation can be solved by means;of e*'“" yielding
the dispersion relations from which we find the lower boun
of the continuum spectrum. Thus we get

d Figures 1-3 show the four kinds of existing families of
stationary solitons. Figures(d—3(a) show the families of
stationary solutions presented inxH diagram, for three

A=i[*o(5—V)*(2o2+q-B)], (6)  representative values of the momentih+ -6, M=1, and
M =6, whereas in Figs.(b)—3(b) we plot the dependence of
0.06 0.06 the soliton energy on the soliton velocity for the same mo-
@ ®) mentum values. Here the stable solitons are displayed with
i solid lines and the unstable ones with dashed lines. There
exists a one-to-one correspondence between the phismtsl

B in Figs. Xa and Xb), betweenA andF in Figs. 2a) and

2(b), and between the poins andD in Figs. 3a) and 3b).

In agreement with the expectations, one finds that for a fixed

008 o0 momentum and for_a_ given energy rovy, th_e solitons reali_z-
o 0 1S 0 5 ing the absolute minimum of the Hamiltonian are dynami-
T T cally stable[the lower full lines in Figs. (a)—3(a)]. Impor-

FIG. 7. (a Internal normalized eigenvector corresponding to tantly, the lower full line in Fig. &) corresponds to stable
branch 8 in Fig. &) at the pointv=1.2, slightly before the critical Slow solitons for the chosen negative value of the momen-
point v.=1.21574. (b) Internal normalized eigenvector corre- tum. The lower full line displayed in Fig.(8) corresponds to
sponding to the poinv=2.16279 slightly after the bifurcation Stable slow solitons until the crossing poktvith the curve
point v,=2.160 56 where the branches 3 and 4 in Fitp)éneet.  for in-phase solitons, then to stable in-phase solitons until the
Dots mark the neutrally stable eigenmode. crossing pointC with the curve for fast solitons, and finally

0.03

0.00

Normalized eigenvector
Normalized eigenvector
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to the fast solitons beyond the poi@t The lower full line in  feature is that there are regions of instability separated by
Fig. 3(a) is composed of two stable pieces: one piece corresmall regions of stabilityor metastability [see, for example,
sponding to vector in-phase solitons until the crossing pointhe regions marked by the curves 3, 4, and 5 in Figb),4
A with the curve for fast solitons, and the other one corre5(c), 5(d), and &b)]. In addition to the standard instability,
sponding to fast solitons beyond the pomtThe sheets on Which can be captured by asymptotic expansion around the
the surfaceH =H(Q,M) that correspond to higher values of n_eutrall_y stable eigenmod_e, we hav_e identified the_ foII_owing
H need special consideration. We have found that there exigifurcation scenario: one internal eigenmddiee 4 in Fig.
also stable(or, more preciselymetastablg stationary solu- 4(®] fuses with another internal eigenmoflme 3 in Fig.
tions on these upper sheets, where the Hamiltonian has @], which emerges from the continuum spectrum. They
local minimum. As shown in Figs.(2)—3(a), we have found form two pairs of eigenfunctions having complex-conjugate
that metastable vector out-of-phase solitons located in sucfi9envalues, giving the onset of the oscillatory instability.
an upper sheet also exist: the curves joining the paiaad | he same kind of instability is shown in Figsah 5(c), and
B in Figs. 1@ and Za) [see also the inset in Fig(@] and () (the lines 3 and % in Figs. Ga) (the lines 1 and g and
the curves joining the poin® andC in Fig. 3a). Thereisan N Fig. 6b) (the lines 3 and 4 The standard bifurcation
additional metastable branch of the fast mode connecting thecenario is illustrated in Figs (), 5(c), 5(d), 6(b), and &c).
points C and D in Figs. 28 and 2b). Notice that forM In or(_jer to compare the two kinds of b|furc§1t|on, we have
=1 there exist two branches of the out-of-phase mode iplotted in Figs. 7 and 8 the corresponding eigenvector pro-
different regions of the parameter space, namely, one brandfies- In the case of standard b_lfurcatlonZ the instability can
joining the pointsC andE in Figs. 2a) and Zb), very close be well described by asymptotic expansion around the neu-
to the in-phase brancfsee the inset in Fig.(@], and the tr_ally stabl'e elgen.mo'désee Fig. 7a), where the internal
other one bifurcating from the fast mode at the p@infThe elgenfunct!on profile is found to be very clos_e to t_he zero
small full line beyond the poirD in Fig. 3(b) corresponds to m_ode profilg, wh_ereas for th_e other kind of bifurcation the
the stable branch of the slow mode arising for rather larg&!9€nvector profiles are quite different from the neutrally
values of the energy and is not shown in Fi¢a)3 stable eigenmodefsee Figs. ), 8(@), and 8b)]. These
Now we discuss the parametric dependence of the regigenvectors can be spatially extended, displaying rapid os-

evant Lyapunov eigenvalues in order to identify the bifurca-clllations [see Fig. T)].
tions to complex-valued eigenvalues. The previously known
instability scenario for the ground stat@®deless solutions IIl. CONCLUSIONS
is related to the existence fde>0 of a pair of purely imagi-
nary eigenvalues(with opoposite signs because of the We have shown that all slow, fast, walking vector in-
Hamiltonian nature of the dynamical problgfying in the  phase, and vector out-of-phase solitons can be dynamically
gap[that is, ouside the intervaH\,,\.)]. These eigenval- stable for appropriate values of the soliton parameters. Re-
ues pass through zero at the bifurcation point whired garding the evolution of unstable solutions, the complex na-
and then appear again as two purely real eigenvalues wittire of the corresponding Lyapunov eigenvalues in some in-
opposite signs. At the point where the Jacohiavanishes, tervals of soliton parameters leads to a rich dynamical
the corresponding eigenvectors coincide with the neutrallyp€havior, showing oscillatory exponential growth of small
stable modes5) (see, e.g.[30]). perturbations similar to those found for the fundamental
The outcomes of the Lyapunov eigenvalue calculationgnodes of the generalized Thirring modg2o].
forM=—-6, M=1, andM =6 are summarized in Figs. 4, 5, The important result of this paper is the clear identifica-
and 6, respective|y’ which show the values of the eigenva|ti0n of the fact that the collision of two internal soliton
ues with the largest real part. As shown in the plot, we foundnodes gives the mechanism for the onset of oscillatory in-
that the soliton solutions destabilize either via the arising oftabilities in the generalized Manakov model.
purely real eigenvaluesr via the arising oicomplex eigen- In conclusion, the cascade of bifurcations of lowest-order
valueswith nonzero real and imaginary parts_ Walklng vector solitons of a generalized Manakov SyStem
We have evidentiated two instability scenarios, irrespecdiscovered in this work, similar to those previously found for
tive of the chosen values of the momentdiarge negative, higher-order nonlinear modes in cubfit8] and quadratic
small positive, and large positiye(i) the standard instability [19] media, indicates that such instability scenarios may also
described above related to the fact that the relevant eigergXist for lowest-order states of other physical models. Thus,
mode has a purely imaginary eigenvalue that passes throughe complicated instability pattern presented in this paper
zero at the critical point and then becomes purely real, anfnay have important consequences for dynamical stability of
(i) the onset of instability is given by the appearance of anultiparameter solitons in other Hamiltonian systems. We
pair of complex-conjugate eigenvalues at the bifurcatiorenvisage that such results may be of interest both from a
point. This instability scenario is similar to that present infundamental point of view in understanding nonlinear dy-
other physical settings, for example in the case of highernamics of conservative, Hamiltonian systems, and from an
order (TEl) modes of nonlinear p|anar Waveguiqe_ﬁ] and applicative pOInt of Vi-eW as well, whenever robustness of
in the case of higher-order parametric solitons in quadratisolitary waves is required.
cally nonlinear media which have a central peak and one or
more surrounding ringsreferred to as peak-and-ring soli-
tons [19].
We have found that the in-phase vector solitons are al- Useful correspondence and discussions with W. J. Firth
ways stabldsee Fig. %e)]. For the other modes, the general and L. Torner are gratefully acknowledged.

ACKNOWLEDGMENTS



7510 MIHALACHE, MAZILU, AND CRASOVAN PRE 60

[1] M.J. Ablowitz and P.A. ClarksonSolitons, Nonlinear Evolu- [16] C. Conti, S. Trillo, and G. Assanto, Phys. Rev. L&®8, 2341

tion Equations and Inverse Scatterii@ambridge University (1997; H. He and P. Drummondbid. 78, 4311 (1997; T.

Press, Cambridge, 1991 Peschel, U. Peschel, F. Lederer, and B.A. Malomed, Phys.
[2] N.N. Akhmediev and A. AnkiewiczSolitons(Chapman and Rev. E55, 4730(1997).

Hall, London, 1997 [17] A.R. Champneys, B.A. Malomed, and M.J. Friedman, Phys.
[3] G.P. Agrawal,Nonlinear Fiber Optics(Academic Press, San Rev. Lett.80, 4169(1998.

[18] H.T. Tran, J.D. Mitchell, N.N. Akhmediev, and A. Ankiewicz,
Opt. Commun.93, 227 (1992; N.N. Akhmediev, A. Ank-
iewicz, and H.T. Tran, J. Opt. Soc. Am. B), 230(1993.

[19] D.V. Skryabin and W.J. Firth, Phys. Rev.98, R1252(1998.

[20] A. De Rossi, C. Conti, and S. Trillo, Phys. Rev. Ledf, 85
(1998; 1.V. Barashenkov, D.E. Pelinovsky, and E.V. Zemly-

Diego, 1995.

[4] A. Hasegawa and Y. Kodam&plitons in Optical Communi-
cations(Clarendon, Oxford, 1995

[5] M.G. Vakhitov and A.A. Kolokolov, lzv. Vyssh. Uchebn.
Zaved. Radiofiz.16, 1020 (1973 [Sov. Radiophys16, 783

(1973]. anayajbid. 80, 5117(1998; J. Schdimann, R. Scheibenzuber,

[6] E.A. Kuznetsov, A.M. Rubenchik, and V.E. Zakharov, Phys. A.S.)/Kovalev, AP l\(/laye%, and A.A. Maradudin, Phys. Rev. E
Rep.142 103(1986. 59, 4618(1999.

[7] F.V. Kusmartsev, Phys. Refi83 1 (1989. [21] D. Mihalache, D. Mazilu, and L. Torner, Phys. Rev. L1,

[8] K.J. Blow, N.J. Doran, and D. Wood, Opt. Lett2, 202 4353(1998.

(1987; E.M. Wright, G.I. Stegeman, and S. Wabnitz, Phys. [27] 5. Manakov, Zh. Esp. Teor. Fiz65, 505(1973 [Sov. Phys.
Rev. A 40, 4455(1989; V.K. Mesentsev and S.K. Turitsyn, JETP 38, 248 (1974]; D.J. Kaup and B.A. Malomed, Phys.
Opt. Lett.17, 1497(1992; Y. Chen and J. Atai, Phys. Rev. E Rev. A48, 599(1993.

52, 3102(1999; D.C. Hutchings and J.M. Arnold, J. Opt. Soc. [23] D.N. Christodoulides and R.I. Joseph, Opt. L&8, 53 (1988;
Am. B 16, 513(1999. M.V. Tratnik and J.E. Sipe, Phys. Rev. 38, 2011(1988.

[9] A.V. Buryak, Y.S. Kivshar, and S. Trillo, Phys. Rev. L€tf, [24] N.N. Akhmediev, A.V. Buryak, and J.M. Soto-Crespo, Opt.
5210(1996; A.V. Buryak and Y.S. Kivsharjbid. 78, 3286 Commun.112 278 (1994; N.N. Akhmediev, A.V. Buryak,
(1997. J.M. Soto-Crespo, and D.R. Andersen, J. Opt. Soc. Arhi2B

[10] L. Torner, D. Mazilu, and D. Mihalache, Phys. Rev. Léft, 434 (1995.
2455(1996; D. Mihalache, D. Mazilu, L.-C. Crasovan, and L. [25] Yu.S. Kivshar and S.K. Turitsyn, Opt. Left8, 337(1993; M.
Torner, Phys. Rev. B6, R6294(1997); C. Etrich, U. Peschel, Haelterman, A.P. Sheppard, and A.W. Snydkid. 18, 1406
F. Lederer, and B. Malomedhid. 55, 6155(1997). (1993; Y. Silberberg and Y. Baradbid. 20, 246 (1995; C.
[11] J.M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, Phys. Pare Phys. Rev. B54, 846 (1996.

Rev. E51, 3547(1995. [26] C.R. Menyuk, IEEE J. Quantum ElectrdQE-23, 174(1987);
[12] N.J. Rodriguez-Fernandez and J.M. Soto-Crespo, J. Mod. Opt.  QE-25, 2674(1989; S.G. Evangelides, L.F. Mollenauer, J.P.
45, 2039(1998. Gordon, and N.S. Bergano, J. Lightwave Technbl, 28

[13] L. Torner, D. Mihalache, D. Mazilu, and N.N. Akhmediev, (1992.
Opt. Commun138, 105(1997). [27] S. Trillo, S. Wabnitz, E.M. Wright, and G.I. Stegeman, Opt.
[14] W. Chen and D.L. Mills, Phys. Rev. Lefi8, 160(1987); A.B. Commun.70, 166(1989; S. Wabnitz, S. Trillo, E.M. Wright,
Aceves and S. Wabnitz, Phys. Lett. 41, 37 (1989; D.N. and G.l. Stegeman, J. Opt. Soc. Am.88602 (1991); A.B.
Christodoulides and R.l. Joseph, Phys. Rev. Lé#. 1746 Aceves and S. Wabnitz, Opt. Lett7, 25(1992.
(1989; C. M. De Sterke and J.E. Sipe, Rrogress in Optics  [28] M.N. Islam, Ultrafast Fiber Switching Devices and Systems
XXXIII, edited by E. Wolf(Elsevier, Amsterdam, 1994pp. (Cambridge U. Press, Cambridge, 1992
203-260. [29] Y. Barad and Y. Silberberg, Phys. Rev. Lét8 3290(1997).

[15] B.J. Eggleton, R.E. Slusher, C.M. de Sterke, P.A. Krug, and30] C. Etrich, U. Peschel, F. Lederer, B.A. Malomed, and Y.S.
J.E. Sipe, Phys. Rev. Left6, 1627(1997. Kivshar, Phys. Rev. 54, 4321(1996.



